ST 361   Ch8 Testing Statistical Hypotheses: Testing Hypotheses about Means (§8.2-1)

Topics: Hypothesis testing with population mean
· One-sample problem: Testing for a Population mean 
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1. Assume population SD is known: use a z test statistic

2. Assume population SD is not known: use a t test statistic

· Two-sample problem: : Testing for 2 population means 
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· A Special Case: the Paired t test
--------------------------------------------------------------------------------------------------------------------
One-sample problem: Testing for a Population mean 
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A Working Example: (adapted from 8.14 p.355 of the textbook) Light bulbs of a certain type are advertised as having an average lifetime of 750 hours. The price of these bulbs is very favorable, so a potential customer has decided to go ahead with a purchase arrangement unless the true average lifetime is smaller than what is advertised. A random sample of 50 bulbs was selected. The sample data and result are presented below: (Assume the population SD of the bulbs lifetime is 38.2.)  (i) What conclusion would be appropriate for a significance level of 0.05? (ii) How about a significance level of 0.01?
	Variable
	n
	Sample Mean
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	SE of Mean
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	Z
	p-value

	Lifetime
	50
	738.44
	5.4
	-2.14
	0.016
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 (a) Steps for Testing for a Population mean 
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Step 1. Specify 
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  vs. 
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 (this is referred to as lower-tailed (sided) hypothesis)
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 (this is referred to as upper-tailed (sided) hypothesis)
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 (this is referred to as two-tailed (sided) hypothesis)

Step 2. Determine the test level 
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 ((also called significance level)
Step 3. Compute the test statistic
A test statistic should be a function of data.
When the population SD 
[image: image15.wmf]s

 is known,  a test statistic is 
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When the population SD 
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 is NOT known, a test statistic is 
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Step 4. Calculate the p-value  (See the example)
Step 5. Draw conclusions
If p-value <
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, then we will reject 
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Otherwise we will continue to believe that 
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 is true. (Then, the type I error probability will be controlled at 
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Ex. (Back to the Working Example: )                               (i)                                             (ii) 

Step 1: parameter of interest = 
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Step 2: significance level 
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Step 3: test statistic = 
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Observed test statistic = 
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Step 4: p-value = 
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Step 5: Conclusion:

Since the p-value < 
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= 0.05, we reject 
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Conclude that 
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 is true.

More on p-value (Step 4)
The p-value quantifies the strength of evidence from the data against the null hypothesis (
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( The smaller the p-value is, the stronger the evidence in the data against 
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( To get a p-value, one begins by assuming 
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 is true (In this example, it means 
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).  We then try to assess how likely it is to get a sample with sample mean 
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as extreme as 738.44 or more extreme than 738.44 when 
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is true,

Here since our alternative is 
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. So a sample mean that is “more extreme than 738.44” is equivalent “smaller than 738.44”. 

· i.e., p-value =   P(
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· Interpretation of p-value: 
(1) If the p-value is very small, it means it is very unlikely to observe a sample as extreme or more extreme than the sample we got when 
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 is true. Therefore,  
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 is probably not true and hence we reject it. 
(2)  If the p-value is very not small, it means it is likely to get a sample as extreme as the current one. So we  don’t reject 
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Q: How small is small?

Use significance level 
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, as a threshold. If p-value is smaller than 
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, we reject 
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[image: image46.wmf]%

100

´

a

of chance in wrongly rejecting 
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· Calculation of p-value (If the population SD is known….) 
p-value = P(
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In general the calculation of p-value can be simplified in the following steps:
Define 
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First calculate the test statistic 
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Then the p-value =  
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For this example, the p-value =   
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· In summary,
1. The p-value describes the probability of seeing your data or more extreme IF the null hypothesis is true. Recall that the more extreme cases are determined by 
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If 
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2. To get p-value, all we need is to calculate the test statistic 
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is the observed sample mean) and then find the corresponding p-value by P(
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3. To draw conclusion, compare p-value with the test significance level 
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Reject 
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Otherwise we do not reject 
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, and continue to believe
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 is true.
 Ex1.  Let X = the scores on the Verbal SAT exam this year. The score X varies according to a normal distribution with mean 
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 and variance 80.  A sample of 64 students was collected, and 
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580.  Records showed that the mean SAT score of two years ago is 570. Based on the data, has the average SAT score increased over the two years? Perform a 0.05-level of test.
Step 1: parameter of interest = 
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, average Verbal SAT score this year.
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Step 2: significance level 
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= 0.05
Step 3: observed test statistic = 
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Step 4: p-value = 
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Step 5: Conclusion: Since p-value < 0.05, we reject 
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Ex2. Consider the true mean stopping distances at 50 mph for cars equipped with the braking system of brand A.  It is known that the average stopping distances for braking system B is 120 inches. Result based on 36 cars equipped with brand A has mean 115. Assume the population SD of the stopping distance of cars equipped with brand A is 20.  Do the stopping distances of the two systems differ?  Perform a 0.01-level of test. 
Step 1: parameter of interest = 
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, the average stopping distance of cars equipped with brand A.
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Step 2: significance level 
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= 0.01
Step 3: observed test statistic = 
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Step 4: p-value = 2*P[Z < -1.5] = 0.1336
Step 5: Conclusion: Since p-value > 
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One-sample problem: Testing for a Population mean 
[image: image86.wmf]m

 when 
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 is unknown
If the population SD 
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 is unknown, the testing procedure is the same as what we do when the population SD 
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 known, except that 

1. the SD  
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  is replaced by the sample SD s
2. (as a result of 1,) the test statistic has a t distribution with df = n-1 , instead of the standard normal distribution.
· Need to know how to use Table VI (p. 568-570) to find p-value for t-distribution with different df  
EX. (From textbook Question 8.17)

1. Upper-tailed test, df=8, t=2.0
p-value = 0.040
2. Lower-tailed test, df=11, t= -2.4

p-value = 0.018
3. Two-tailed test, df=15, t= -1.6
p-value = 2*0.065 = 0.130
4. Two tailed test, df=40, t=4.8

p-value = 0
Ex1. Life of electric bulb: Industrial standard for the bulb life is 6000 hours. A company claims that their bulbs are better than the industrial standard. To test their claim, a sample of 16 light bulbs was collected and has mean 6.5 (unit=1000 hours) and SD 1 (unit = 1000 hours).  (a) Perform a test at 5% level. (b) What assumption do we need to conduct a hypothesis?
(a) Step 1: parameter of interest = 
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, the average of life time (in 1000 hrs) of the light bulbs produced by that company
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Step 2: significance level 
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Step 3: observed test statistic:  
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Step 4: p-value:

p-value = 
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Step 5: Conclusion: Since the p-value < 
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, we reject  
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(b) Assumption needed: The life time of the light bulbs is normally distributed 
Ex2. A certain pen has been designed so that the true average writing lifetime is 10 hours. A random sample of 18 pens is selected and the writing lifetime of each is determined: the mean lifetime of the 18 pens is 10.5 hours with SD=1.2 hours. Perform a 0.01 level of test to examine if the design specification has been satisfied. 
(a) Step 1: parameter of interest =
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, the average writing time of the pens.
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Step 2: significance level 
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Step 3: observed test statistic:
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Step 4: p-value:

p-value = 
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Step 5: Conclusion: Since the p-value > 
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, we don’t reject 
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. That is, we believe the pens meet the design specification.
(b) Assumption needed: (select any that apply)


_______ The sample mean lifetime follows a normal distribution


____X___ The lifetime follows a normal distribution
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