DESCRIPTIVE STATISTICS:

MEAN: $\quad \bar{x}=\frac{1}{n} \sum x_{i}$
VARIANCE: $s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
STANDARD DEVIATION: $s=\sqrt{s^{2}}$
STANDARD ERROR: $S E_{\bar{X}}=\frac{s}{\sqrt{n}}$
Z-SCORE: $Z=\frac{x-\mu}{\sigma}$

REGRESSION LINES:

For a data set $\left(x_{i}, y_{i}\right)$, where (\bar{x}, \bar{y}) are the centroids (means) of the data set, and r is the correlation coefficient:

LEAST-SQUARES REGRESSION LINE: $\hat{y}=b_{o}+b_{1} x$
RESIDUALS: $e_{i}=y_{i}-\hat{y}$
$\mathrm{SSM}=\sum\left(\bar{y}-\hat{y}_{i}\right)^{2} \quad$ SSE $=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \quad$ SST $=\mathrm{SSM}+\mathrm{SSE}$
COEFFICIENT OF DETERMINATION: $r^{2}=\frac{S S M}{S S T}$
CORRELATION COEFFICIENT: $r=\sqrt{r^{2}}$
SLOPE: $\quad b_{1}=r \frac{s_{x}}{s_{y}}$
INTERCEPT: $b_{0}=\bar{y}-b_{1} \bar{x}$
VARIANCE: $M S E=s^{2}=\frac{\sum e_{i}^{2}}{n-2} \quad$ ST DEV: $s=\sqrt{s^{2}}$
STANDARD ERROR $\mathrm{b}_{1}: \mathrm{SE}_{\mathrm{b} 1}=\frac{s}{\sqrt{\sum\left(X_{I}-\bar{x}\right)^{2}}}$
STANDARD ERROR $\mathrm{b}_{0}: \mathrm{SE}_{\mathrm{b} 0}=s \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}$
CONFIDENCE LEVEL FOR THE INTERCEPT $\beta_{0}: b_{0} \pm \mathrm{t}^{*} \mathrm{SE}_{\mathrm{b} 0}$
CONFIDENCE LEVEL FOR THE SLOPE: $\beta_{1}: b_{1} \pm \mathrm{t}^{*} \mathrm{SE}_{\mathrm{b} 1}$
PREDICTION INTERVAL: $\hat{y} \pm t * S E$

HYPOTHESIS TESTING - MEANS:

STANDARD ERROR: $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
MARGIN OF ERROR: $\mathrm{m}=z * \frac{\sigma}{\sqrt{n}}$ or $\mathrm{m}=t * \frac{\sigma}{\sqrt{n}}$
CONFIDENCE INTERVAL: C.I. $=\bar{x} \pm m$
SAMPLE SIZE FOR A GIVEN $\mathrm{m}: n=\left(\frac{z * \sigma}{m}\right)^{2}$
ONE SAMPLE Z-TEST: $z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \quad$ T-TEST: $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$
TWO SAMPLE Z-TEST: $z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$
TWO SAMPLE T-TEST: $t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
PROPORTION: $\hat{p}=\frac{X}{n}$, where $\mathrm{X}=$ number of successes
STANDARD ERROR: $S E_{\hat{P}}=\sqrt{\frac{\hat{P}(1-\hat{p})}{n}}$
MARGIN OF ERROR: $\mathrm{m}=z * S E_{\hat{p}}$
Z-TEST, ONE-SAMPLE PROPORTION: $z=\frac{\hat{p}-p_{o}}{\sqrt{\frac{p_{o}\left(1-p_{o}\right)}{n}}}$
STD ERR, 2-SAMP PROP: $S E_{D}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
MARGIN OF ERR, 2-SAMP PROP: $\mathrm{m}=z * S E_{D}$
PLUS FOUR PROPORTIONS: $\tilde{p}_{i}=\frac{x_{i}+1}{n_{i}+2}$
EST DIFF BTWN PROPS: $\widetilde{D}=\tilde{p}_{1}-\tilde{p}_{2}$
STD DEV: $\sigma_{\widetilde{D}}=\sqrt{\frac{P_{1}\left(1-p_{1}\right)}{n_{1}+2}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}+2}}$
POOLED PROPORTION: $\hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}$
POOLED STD ERR: $S E_{D_{P}}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$
TWO SAMPLE Z-SCORE: $z=\frac{\hat{p}_{1}+\hat{p}_{2}}{S E_{D p}}$

MEAN: The mean, symbolized by x-bar, equals one divided by the number of samples multiplied by the sum of all data points, symbolized by x-sub-i.

VARIANCE: Variance, symbolized by s squared, equals 1 divided by the number of samples minus one, multiplied by the sum of each data point subtracted by the mean then squared.

STANDARD DEVIATION: Standard deviation, symbolized by s, equals the square root of the variance s-squared.
STANDARD ERROR: The standard error of the mean equals the standard deviation divided by the square root of the number of samples.

Z-SCORE: Z equals the test data minus the population mean, then divided by the population standard deviation.

REGRESSION LINES:

LEAST-SQUARES REGRESSION LINE: The predicted value, symbolized by y-hat, equals the intercept, symbolized by b-sub-o, plus the slope, symbolized by b-sub-1, times the data point x .

RESIDUALS: The residual, symbolized by e-sub-I, equals the data point y, symbolized by y-sub-I, minus the predicted value from the least-squares regression line, symbolized y-hat.

SSM, SSE, SST: Sum of square means equals the sum of the centriod, symbolized by y-bar, minus the predicted value of each x data point, symbolized by y-hat sub I. Sum of square errors equal the sum of each y data point, symbolized by y-sub-I, minus the predicted value of each data point, symbolized by y-hat-sub-I, then squared. The Sum of Square Total = Sum of Square Means plus Sum of Square Errors.

COEFFICIENT OF DETERMINATION: The coefficient of determination, symbolized r-squared, equals the sum of square means divided by the sum of squares total.

CORRELATION COEFFICIENT: The correlation coefficient r equals the square root of the coefficient of determination, symbolized by r-squared.

SLOPE: Slope, symbolized b-sub-one, equals the correlation coefficient r multiplied by the ratio of the standard deviation of the x data points to the standard deviation of the y data points.

INTERCEPT: Intercept, symbolized by b-sub-zero, equals the mean of the y data points, symbolized by y-bar, minus the slope, symbolized by b-sub-one multiplied by the mean of the x data points, symbolized by x-bar.

VARIANCE: Mean of Square Errors, symbolized s-squared or MSE, is equal to the sum of the residuals, symbolized by e-sub-I, squared then divided by the number of data points subtracted by two. STANDARD DEVIATION, symbolized by s, equals the square root of variance.

STANDARD ERROR: The standard error of the slope, symbolized by SE-sub-b1, equals the standard deviation, symbolized by s, divided by the square root of the sum of each data point, symbolized by x-sub-I, subtracted from the mean of all x data points, symbolized by s-bar, then squared.

The STANDARD ERROR of the intercept, symbolized by SE-sub-bo, equals the standard deviation, symbolized by s, multiplied by the square root of one divided by the number of data points plus the mean of all x's squared, symbolized by x-bar squared, divided by the sum of all x data points, symbolized by x-sub-I minus the mean of all x data points, symbolized by x-bar, squared.

CONFIDENCE LEVEL FOR THE INTERCEPT: The confidence level for the intercept, symbolized beta-sub-zero, equals the sample intercept, symbolized by b-sub-zero, plus or minus the t-score for the interval, symbolized by t, multiplied by the standard error of the intercept.

CONFIDENCE LEVEL FOR THE SLOPE: The confidence level for the slope, symbolized by beta-sub-one, equals the sample slope, symbolized by b-sub-one, plus or minus the t-score for the interval, symbolized by t, multiplied by the standard error of the slope.

PREDICTION INTERVAL: The prediction interval equals the predicted value of y, symbolized by y-hat, plus or minus the t-score for the interval, symbolized by t , multiplied by the standard error.

